AMSI 2013: MEASURE THEORY Extra Solutions B

Marty Ross martinirossi@gmail.com

February 3, 2013

- The fact that $A \subseteq X$ is a Borel set iff χ_A is a Borel function can be proved in exactly the same way as (a) (b).
- If $f: X \to \mathbb{R}^*$ is continuous then $f^{-1}([-\infty, a))$ is open, and thus trivially Borel as well. Thus f is Borel.
- If $f: X \to \mathbb{R}^*$ is Borel and μ is a Borel measure on X, then $f^{-1}([-\infty, a))$ is Borel, and therefore also μ -measurable, for any $a \in \mathbb{R}^*$. Thus f is obviously measurable.
- We want to show that if $f : \mathbb{R}^* \to \mathbb{R}^*$ is monotonic then f is Borel. To prove this, suppose b < c, f(b) < a and f(c) < a. Then any $d \in (b, c)$ will be in the interval with endpoints f(b) and f(c), and so f(d) < a also. It follows that $f^{-1}([-\infty, a))$ is an interval, and is therefore Borel, for any $a \in \mathbb{R}^*$. Thus f is Borel.
- We consider $f: \mathbb{R}^* \to \mathbb{R}^*$ where $f(x) = \frac{1}{x}$, with f(0) = c, for some fixed c. We want to show that f is Borel.

Define $g: \mathbb{R}^* \sim \{0\} \to \mathbb{R}^*$ by $g(x) = \frac{1}{x}$. Then

$$g^{-1}([-\infty, a)) = \begin{cases} \left[\frac{1}{a}, 0\right) & a < 0, \\ [-\infty, 0) & a = 0, \\ [-\infty, 0) \cup \left(\frac{1}{a}, \infty\right] & a > 0. \end{cases}$$

These sets are all obviously Borel. And, for any a, either $f^{-1}([-\infty, a) = g^{-1}([-\infty, a))$ or $f^{-1}([-\infty, a) = g^{-1}([-\infty, a) \cup \{c\})$. Since $\{c\}$ is a closed set, $f^{-1}([-\infty, a))$ is always a Borel set, and thus f is a Borel function.

Given $f: X \to \mathbb{R}^*$ Borel or measurable, we want to show the equivalence of :

 $\begin{cases} (a) & f^{-1}\left([-\infty,a)\right) \text{ is Borel (measurable) for all } a \in \mathbb{R}; \\ (b) & f^{-1}\left([-\infty,a]\right) \text{ is Borel (measurable) for all } a \in \mathbb{R}; \\ (c) & f^{-1}(U) \text{ is Borel (measurable) for all open } U \subseteq \mathbb{R}^*; \\ (d) & f^{-1}(B) \text{ is Borel (measurable) for all Borel } B \subseteq \mathbb{R}^*. \end{cases}$

We'll focus upon measurability, the arguments for the Borel functions being identical. Trivially (d) implies (c), which implies (a). To see (a) and (b) are equivalent, let

$$\mathcal{M} = \{ \mathcal{A} \subseteq \mathbb{R}^* : f^{-1}(\mathcal{A}) \text{ is measurable} \}$$

By the properties of f^{-1} , \mathcal{M} is a σ -algebra, whether or not f is measurable. The equivalence of (a) and (b) then follows from

$$\begin{cases} [-\infty, a) = \bigcup_{n=1}^{\infty} [-\infty, a + \frac{1}{n}] \in \mathcal{M} \quad \text{assuming (b)}, \\ [-\infty, a] = \bigcap_{n=1}^{\infty} [-\infty, a + \frac{1}{n}) \in \mathcal{M} \quad \text{assuming (a)}, \end{cases}$$

The proof that (b) and (a) together imply (c) is the same as for the proof of $\overset{\text{sol}}{20}$.

Finally, we show (c) implies (d). Assuming (c), we know \mathcal{M} is a σ -algebra which contains all the open subsets of \mathbb{R}^* . But the collection of Borel sets \mathcal{B} on \mathbb{R}^* is the intersection of all such collections, and thus $\mathcal{B} \subseteq \mathcal{M}$. This is exactly the desired conclusion (d).

We'll just consider the upper envelope. Let $n \in \mathbb{N}$, and define $f_n: X \to \mathbb{R}^*$

$$f_n(x) = \sup_{y \in U_{\frac{1}{n}}(x)} f(y)$$

Then $f = \lim f_n$, and so we just have to show each f_n is Borel.

Fix n and $a \in \mathbb{R}$, and let

$$A = \{x : f_n(x) > a\}$$
.

We show that A is an open set. So suppose $x \in A$. Then there is a $y \in U_{\frac{1}{n}}(x)$ with f(y) > a. Let $d(x,y) = s < \frac{1}{n}$, and suppose z is such that $d(z,x) < \frac{1}{n} - s$. Then, by the triangle inequality, $d(z,y) < \frac{1}{n}$, and so $z \in A$ also. It follows that A contains an open ball about x. Since x was arbitrary, A is open as desired.

(a) We want to show that if $f, g \ge 0$ are measurable then $\int f + g \ge \int f + \int g$. Let $\phi \le f$ a.e. and $\psi \le g$ a.e. be simple functions. Then $\phi + \psi \le f + g$ a.e. is simple. So, by Lemma 16 and the definition of integral,

$$\int f + g \ge \int \phi + \psi = \int \phi + \int \psi.$$

Taking the sup over all ϕ and ψ , we get the desired result.

(b) If $\{f_j\}$ is a sequence of nonnegative measurable functions, then by (a),

$$\int \sum_{j=1}^{\infty} f_j \ge \int \sum_{j=1}^{n} f_j \ge \sum_{j=1}^{n} \int f_j \, dx$$

Taking the limit in n, we see

$$\int \sum_{j=1}^{\infty} f_j \ge \sum_{j=1}^{\infty} \int f_j$$

≥ 28 We have

$$\left|\int f\right| = \left|\int f^+ - \int f^-\right| \le \int f^+ + \int f^- \le \int \left(f^+ + f^-\right) = \int |f|.$$

(a) Given $f \ge 0$ measurable and $\epsilon > 0$ define

$$\psi(x) = (1+\epsilon)^k$$
 where $(1+\epsilon)^k < f(x) \le (1+\epsilon)^{k+1}, \quad k \in \mathbb{Z}$.

Then ψ is simple and $f \leq \psi \leq (1+\epsilon)f$. It follows that $\int \psi \leq (1+\epsilon)\int f$. Taking $\epsilon \to 0$, it follows that $\int f$ is the infimum of the integrals of simple functions above f.

(b) Writing $f = f^+ - f^-$ and applying (a) and the definition of the integral, it easily follows that if f is integrable then

$$\int f \, d\mu = \sup \left\{ \int \phi \, d\mu : \phi \leqslant f \text{ a.e.}, \phi(X) \text{ countable} \right\}$$
$$= \inf \left\{ \int \psi \, d\mu : \psi \geqslant f \text{ a.e.}, \psi(X) \text{ countable} \right\}.$$

 $F:[a,b] \to \mathbb{R}$ is differentiable on (a,b) and continuous on [a,b], and F' is bounded off of a null set. Then, for any small $h \ge 0$, we have

$$\int_{a}^{b-h} \frac{F(x+h) - F(x)}{h} d\mathscr{L}(x) = \int_{b-h}^{b} F - \int_{a}^{a+h} F,$$

As $h \to 0$, the RHS converges to F(b) - F(a), by the continuity of F. And, the LHS converges to $\int F'$, by the Mean Value Theorem and the Dominated Convergence Theorem.

With $F(x,t) = t^3 e^{-t^2 x}$, we set $f(t) = \int_0^\infty F(x,t) d\mathscr{L}(x)$. Clearly $f(0) = \int_0^\infty 0 = 0$. For $t \neq 0$, we easily integrate to give

$$f(t) = \left[-\frac{t^3}{t^2}e^{-t^2x}\right]_0^\infty = t.$$

Thus f(t) = t for all t and f'(0) = 1.

On the other hand,

$$D_2F(x,t) = (3t^2 - 2t^4x) e^{-t^2x} \implies D_2F(x,0) = 0.$$

Thus

$$\int_{0}^{\infty} D_2 F(x,0) \, \mathrm{d}\mathscr{L} = 0 \neq 1 = f'(0) \, .$$

For
$$I \subseteq \mathbb{R}$$
 an open interval, we assume $F: X \times I \to \mathbb{R}^*$ satisfies

- For each $t \in I$, the function $x \mapsto F(x, t)$ is μ -summable;
- For each $t \in I$, $D_2F(x, t)$ exists for μ -a.e. $x \in X$;
- There is a summable function $M: X \to R$ with

$$\sup_{t \in I} |D_2 F(x, t)| \leq M(x) \quad \text{for } \mu\text{-a.e. } x \in X.$$

Then we want to show $f\!:\!I\!\rightarrow\!\mathbb{R}$ defined by

$$f(t) = \int F(x,t) \,\mathrm{d}\mu(x) \,.$$

is differentiable and that

$$f'(t) = \int D_2 F(x,t) d\mu(x) \qquad t \in I.$$

Fix $t \in I$, and consider $h \neq 0$ small enough that $t + h \in I$. Define

$$f_h(t) = \frac{f(t+h) - f(t)}{h} = \int \frac{F(x,t+h) - F(x,t)}{h} \,\mathrm{d}\mu(x)$$

Now, by the Mean Value Theorem, for every x, t and h there is an $s \in I$ such that

$$\left|\frac{F(x,t+h) - F(x,t)}{h}\right| = |D_2F(x,s)| \leq M(x).$$

So, we can apply the Dominated Convergence Theorem to prove

$$f'(t) = \lim_{h \to 0} f_h(t) = \int \lim_{h \to 0} \frac{F(x, t+h) - F(x, t)}{h} \, \mathrm{d}\mu(x) = \int D_2 F(x, t) \, \mathrm{d}\mu(x) \, .$$

